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Abstract---The effect of surface tension of a deformably free upper surface on the onset of convective 
instability in a doubly diffusive fluid layer is investigated with the linear stability theory. The eigenvalue 
problem is numerically solved, employing the Runge-Kutta~3ill's method of order four and making use 
of the Broyden's method for correction of the starting values during the integration process. The results 
show that the effect of Crispation number, C, becomes very sensitive on determining the possible mode of 
convective instability. The surface tensile and thermosolutal modes can coexist stationarily at 
C = 8.44 x 10 4. For C < 8.16 x 10 -4, the whole system is dominated by the oscillatory mode. One of the 
interfacial effects, associated with the Bond number, Bo, do increase critical conditions of both stationary 
and oscillatory modes. The Marangoni number, M, and the solutal Marangoni number, Ms, play important 

roles on causing the onset of the convective instability and, in turn, reinforce each other mutually. 

INTRODUCTION 

For a horizontal layer of a doubly diffusive fluid with 
a deformably free upper surface being heated from 
below, the single or combined effect of the thermal or 
solutal buoyancy or thermally or solutally dependent 
surface tension may dominate the possible convection. 
The Rayleigh-B6nard convective instability, due to 
the thermal buoyancy as a result of a vertically 
unstable density distribution, has been extensively 
studied [1-4]. The Marangoni convective instability, 
resulting from the variation of surface tension with 
the temperature, can set in at the marginal state 
stationarily and oscillatorily [5-7]. Nield [8] analyzed 
the B6nard-Marangoni problem by using the linear 
stability analysis. The thermosolutal convective insta- 
bility in a doubly diffusive fluid layer, induced by 
thermal and solutal gradients, was first analyzed by 
Nield [9]. Either thermal or solutal effect can act as a 
stabilizing or destabilizing factor such that stationary 
and oscillatory modes can be possible. 

The B6nard-Marangoni convective instability, 
driven by thermosolutal gradients and thermo- 
solutally dependent surface tension, has been analyzed 
[8-16] and has received considerable attention for its 
applications in engineering problems, such as oil 
extraction from porous media, energy storage in 
molten salts, crystal growth in space and colloids and 
detergents in chemical engineering. McTaggart [10] 
studied a zero-gravity environment, neglecting the 
effect of thermosolutal buoyancy, with a flat free 
upper surface under the influence of infinite surface 
tension. Chen and Su [11] have studied a more general 
case of including the effects of surface tension and 

interfacial deformation. Davis and Homsy [12, 13] 
studied the effect of the interfacial deflection, applying 
the energy method, and found that a deformable inter- 
face could lead to a stabilization relative to the case 
of a planar interface. Castillo and Velarde [14] 
extended the work of Davis and Homsy [13] and ana- 
lyzed the role of interfacial deformation in one- and 
two-component fluid layer. The effect of interfacial 
deflection on the Marangoni instability was further 
studied by Scriven and Sternling [15]. P6rez-Garcia 
and Carneiro [16] made a systematic study on the 
linear stability of the B6nard-Marangoni convective 
instability of single component fluid and focused on 
the effect of the interfacial deformation. Two station- 
ary modes, a stationary mode and an oscillatory mode 
or two oscillatory modes can coexist simultaneously. 

In this paper, we consider a doubly diffusive fluid 
layer with a deformably free upper surface under a 
gravity field. The surface tension is assumed to be 
linearly dependent on temperature and concentration 
and the thermosolutal buoyancy is taken into account. 
The principle of exchange of stabilities could hold for 
the convective instabilities of the Rayleigh-B6nard 
types [1-4] and Marangoni types [6, 7] as well. In the 
models considered, the free upper surface is assumed 
fiat. Since the Crispation effect [15, 16], determining 
the deformability of the free upper surface, is drastic 
on the Marangoni convective instability, either 
stationary or oscillatory mode could be possible. 

MATHEMATICAL FORMULATION 

A horizontal fluid layer of two components with a 
thickness d, as shown in Fig. 1, is considered. The 
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NOMENCLATURE 

a wave number of small disturbance 
Bo Bond number, pgd2 /7 
C Crispation number, #x/Td 
d thickness of fluid layer 
e_ unit vector in the z-direction 
g gravity 
h coefficient of heat transfer 
hs coefficient of mass transfer 
k thermal conductivity 
K parameter of solutal flux at upper 

surface, hsd/ks 
L parameter of heat flux at upper 

surface, h d/k 
LE Lewis number, ~/hs 
M Marangoni number, rATd/#h 
Ms solutal Marangoni number, rsASd/it• 
n normal unit vector at free upper 

surface 
p pressure 
Pr Prandtl number, v/h- 
R Rayleigh number, ~gATd3/vt< 
Rs solutal Rayleigh number, esqASd3/v~cs 
S solute concentration 
t time 
t tangential unit vector at free upper 

surface 
T temperature 
V velocity, (u, v, w) 

x, y, z coordinates 
Z nondimensional surface deflection. 

Greek symbols 
~. coefficient of thermal expansion of 

fluid 
7 surface tension 
;1 position of upper free surface 
0 dimensionless temperature 
h- thermal diffusivity 
p dynamic viscosity of fluid 
v kinematic viscosity of fluid 
p density of fluid 
r surface tension gradient with respect 

to temperature, 8;,/8T 
at, a~ real and imaginary growth rates with 

time. 

Superscript 
steady-state quantity 
dimensionless perturbed quantity. 

Subscript 
o referred quantity 
c critical state 
s solutal 
so frontier point intersected by stationary 

and oscillatory loci. 

lower boundary is rigid and isothermal and the upper 
boundary is deformaly free. The governing equations, 
assuming the Boussinessq's approximation, are 

p=po[ l -o~ (T -To)+O~s(S -S , , ) ]  (1) 

V" V = 0 (2) 

o[-OV+[_vr V] = - (3) P [~s-. (V'V) V p - p g e : + p V  2 1/ 

8T 
(?t + ( V" V) r = ~:V 2 T (4) 

8S 
?,~ + ( V ' V ) S  = ~:sV2S (5) 

where ~ = - p 2  ~ 8p/ST and ~s = P2 ~ 8p/OS are the 
volume expansion coefficients due to variations of 

free surface 

9 

z 

Liquid layer 

rigid boundary 

Fig. 1. Physical model. 

f 
J 



Convective instability in a doubly diffusive fluid layer 409 

temperature T and solute concentration S, relatively, 
and Po, To and So are the reference density, tem- 
perature and solute concentration at the lower bound- 
ary, respectively. V = (u, v, w) is the fluid velocity, p is 
the pressure, g is the gravity, e. is the unit vector in 
the z-direction. The viscosity #, the thermal diffusivity 
x and the solute diffusivity Xs are assumed constant. 

The boundary conditions of the deformably free 
upper surface, at z = d + q ( x , y , t ) ,  are subject to 
momentum, energy and solute balances. The kine- 
matic, thermal and solutal boundary conditions are 

&l +U~x x +v;=w Z 
k V T ' n +  h T  = 0 

xsVS" n + h s S  = 0 

where k is the thermal conductivity and h and h s are 
coefficients of heat and mass transfers, respectively. 

The dynamical boundary conditions of tangential 
and normal stresses are 

97 97 

(Pa --P) + 2/~Dn, = 7V" n 

7 = 7 o - r ( T - T o ) - r s ( S - S o )  

where Pa is the reference pressure, {Da} is the rate of 
strain tensor, t and n denote the tangential and normal 
unit vectors at the free upper surface, ? is the surface 
tension, 70 is a reference value and r and Zs are the 
rates of change of the surface tension with temperature 
and solute concentration, respectively. 

The boundary conditions at the lower boundary of 
the fluid layer are rigid and isothermal with a fixed 
solute concentration. 

The steady solutions of basic state for the tem- 
perature Tand the solute concentration Sare  assumed 
linear, 

T (z )=  T O - - ( d ) A T  (12) 

S ( z ) =  S o -  ( d ) A S  (13) 

where AT and AS are the respective differences in 
temperature and solute concentration across the fluid 
layer. 

We may introduce the infinitesimal disturbances to 
the governing equations by setting 

( v ,u ,w ,p ,p ,  T , S )  = (0,0,0, po,p, T,S) 

+(u ' , v ' ,w ' ,p ' , p ' ,O ' ,S ' )  (14) 

where the primed quantities represent the perturbed 
variables. 

Here the adopted scales for the coordinates, time, 
velocity, temperature and solute concentration are d, 
d2/K, x/d, A T  and AS, respectively. The governing 

equations of the perturbed state in the dimensionless 
form can be obtained as 

1 9 
2 RS 2 4 z (V2w ') = R V h O ' - +  - T - - V h S ' - + - V  W 

Pr 9t LE 
(15) 

90' 
- -  - w '  = V 2 0  ' ( 1 6 )  
9t 

9~ - w" = VzS  ' (17) 

V 2 = 9 2 / ~ X  2 +92/@ 2 and V 2 = c~2/gx2+gz/ 

I 1 9 (~2 2\q9 w, 
c - ~ +  ~ + 3 v ~ ) J T ~ -  ~ 

+ ( B o - V ~ ) V 2 Z  ' = O. (23) 

The Z '  is the dimensionless interfacial deformation. 
The Crispation number C and Bond number Bo, 
resulting from the dynamical balance in the normal 
direction of the deformable surface, are defined as 

C = #x/yd Bo = pgd2/7 . (24) 

The thermal and solutal Marangoni numbers M and 
Ms, being measures of the rate of change of surface 
tension with temperature and solute concentration, 
are defined as 

M = zATd/pv~c Ms = rsASd/pvrc. (25) 

Since equations (20) and (21) are the general radi- 
ation-type conditions [9], the parameters L and Kmay  
take any value between 0 and oo. If the upper free 
surface is thermally insulated, then L = 0. On the 
other hand, when L--* ~ ,  it becomes isothermal. 
Analoguously, if the upper free surface is imper- 
meable, then K = 0. While the solute concentration at 
boundary is kept constant, at its saturated state, 
then K--* or. 

The lower boundary of the fluid layer, at z = 0, is 

(22) 

where 
9y 2 + 92/9z 2. The Prandtl number Pr = v/x, the Lewis 

(6) number LE = ~C/rs, and the thermal and solutal 
Rayleigh numbers are 

(7) 
R = ~ f f A T d 3 / v l ¢  Rs = O { s f f A S d 3 / v t C s  • (18 )  (8) 

Similarly, the dimensionless boundary conditions of 
the perturbed state at the deformably free upper 
surface, at z = 1, are 

9Z'  
= w' (19) 

9t 
(9) 

90' 
aT + LO' = LZ' (20) 

(lO) 

(11) 9s' 9~ + KS" = KZ" (21) 

(Sz~ - V~)w' + MV~(Z'-O')+ ~--~V~(Z'-S') = O 
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assumed rigid with its temperature and solute con- 
centration fixed, thus 

(~ | l '"  
w '  - - 0 '  = S '  = 0 .  ( 2 6 )  

#z 

Assuming the normal mode analysis for the per- 
turbed state, then, the perturbed vertical velocity w'. 
temperature 0', solute concentration S '  and interfacial 
deflection Z '  become 

(w', 0', S' ,  Z ' )  = [W(:), O(:) ,  ~ ( : ) ,  Z] 

x e x p [ i ( a ~ x + a , . y ) + a t ]  (27) 

where a~ and a, are the wave numbers of the dis- 
turbances in the x and y directions, respectively, and 
a = ar+ ier~ is the reaction of the disturbances to the 
system, ar is the growth rate. If ar > 0, the dis- 
turbances grow and the system becomes unstable. If 
a~ < 0, the disturbances decay and the system becomes 
stable. When a~ = 0, the instability of the system sets 
in at the marginal state, i.e. stationary (o-~ = 0) or 
oscillatory (a~ ¢ 0). 

By substituting equation (27) into equations (15) 
(17), the governing equations of the perturbed state 
become 

( D 2 - - a  2) ( D - ' - - a : ) W =  - - a ' - R ® + a :  c~;(q) 
Pr 

(28) 

[ i o i - ( D  e - 4 2 ) ] 0  - W = 0 ( 2 9 )  

Iiai I ~ ( D :  -a2)]qb  - W =  0 (30) 

where the operator D = ?,/'~z, and a = (a{ + a~) ~ : is 
the wave number of the disturbances at the fluid layer. 

The boundary conditions at the deformably upper 
free surface, at z = 1, are 

W = icriZ (31) 

( D +  L ) ®  = L Z  (32) 

( D +  K)(I) = K Z  (33) 

Ms (D 2 + a 2 ) W +  M a 2 ( ® -  Z ) +  ~ a 2 ( @ -  z )  = 0 

(34) 

and the boundary conditions at the bottom surface, 
at z = 0 ,  is 

W = D W  = ® = • = 0. (36) 

NUMERICAL PROCEDURE 

The governing equations (28)-(30) and boundary 
conditions (31) (36) form a Sturm-Liouville 's prob- 
lem with the thermal or solutal Marangoni  number, 

M or Ms, or thermal or solutal Rayleigh number,  
R or Rs, being the eigenvalue with other physical 
parameters, such as Pr, LE, C, Bo, L, K and a fixed. 
The shooting technique, based on the R u n g e - K u t t ~  
Gill 's method of order four [17], is used to solve the 
problem. 

The first step in the procedure is to rewrite equations 
(28)-(30) as a system of first-order equations, 

W = u ~  

D W  = Dut = u,_ (37) 

D 2 W  = Du2 = u3 (38) 

D ~ W = Du~ = u~ (39) 

[ ~ = b / s  

D O  = Du5 = u~, (40) 

( 1 ) = U  7 

D¢I) = Duv = us (41) 

and we obtain 

D4W=Du4 ~ p r + 2 a 2  u3 

\ P r  +a2 a 2 u ' + R a ~ u s - - - - -  L v a - u 7  (42) 

D ~ ®  = Du6 = (i~ri + a:)us - ul (43) 

D2@ = Du~ = (LEi~i + a2)u7--  LEul .  (44) 

The shooting procedure starts from the upper 
boundary conditions (31)-(34), at z = 1, and trys to 
match the lower boundary conditions (36), at z = 0. 

The upper boundary conditions (31) (34), at z = I, 
can be expressed as 

I 3io" i (7 O'~ C 7 iai C 
- -  ~ bt9 

u, = + ( B o + a 2 ) a _ p r l  J _ + Bo + a 2 Boa ~_ + a 4 u4 

[3 ia iCa  z a2C 3 M C a  2 

u~ -- I [ B o + a ~  - ( B o + a 2 ) p r  B o + a  2 

ice M C 

( B o + a 2 ) P r  

3 M s C a  2 i a i M s C  ] 

(Bo+aZ)LE (Bo+a2)L~PrJ u2 
i aC  M C  M s C  7 

B o ~ - a -  B o + a  2 (Bo+a2)L~:]  u4 

-- Ma2u5 - M~w a'~u 7 

= _ ~ 3 L C  ia iLC  ] 

"0 LBo+.  + 

L C  
+ B® +~a ~ a2 hI4 - -  Lu5 

(45) 

(46) 

(47) 
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= - [ 3KC iaiKC -] 

u, LBo+ az + (Bo~a2)a2erjU2 

KC 
+ Bo + a ~ a2 u4 - guT. 

We shall guess four boundary conditions, 

u 2 = c l ,  u4=c2 ,  u5=c3 ,  and u7=c4  

then the general form of the solution becomes 

V = c I U I + c 2 U  2 -~-c3U 3 2 f - c 4 U  4 

where 

U = [Ul ,  u2 ,  ~/3, u4 ,  Us, u6 ,  u7 ,  u8]  T 

U, = [ 3iaiC a~C 3iaiCa 2 
B o + a  2 (Bo+a2)a2p r, 1, B o + a  2 

a~ C 3MCa 2 ia iMC 

(Bo+aZ)Pr B o + a  2 (Bo+a2)pr  

3MsCa 2 iaiMsC 

(Bo+a2)LE (Bo+az)LEP r, O, O, 

3LC iaiLC 
( Bo + a2)a2 Pr ,0, 

iaiKC 1 T 

(Bo + a 2) a 2 PrA 

Bo + a 2 

3KC 

Bo + a 2 

= [_ iaiC iaC M C  
U: L Boa2 +a4 ' O, - -  + - -  Bo + a 2 Bo + a z 

MsC + 
(Bo + a 2) L E ' 

Kc ]7 
O, m a 2 

B o + a  2 

L C  
l, O, - - a  2, 

B o + a  2 

that the relation among the parameters is thus estab- 
lished, 

f( iai ,  R, Rs, M, Ms, C, Bo, K, L, Pr, LE, a) = 0 
(48) 

(57) 

wherefis the determinant of the coefficient matrix. 
(49) With fixed values for the physical parameters R, Rs, 

Ms, C, Bo, K, L, Pr, Z E and the wave number a, the 
Marangoni number M and frequency ai, using the 

(50) iterative Broyden's method [18], is solved. The critical 
conditions Me and ai¢, marking the onset of convective 
instability at the marginal state, are thus obtained. 

(51) 

(52) 

(53) 

U3 = [0,0, --Ma2,0, 1, - L , 0 , 0 ]  T (54) 

U4= | 0 , 0 , - M s  2,0,0,0,1 
~-E a , _ j r .  

8 (55) 

Guess a value for M and assume Ui, i = 1, 4, in 
(52)-(55) as a set of initial conditions. We then start 
the shooting procedure, using the Runge-Kutta-  
Gill's method of order four, from z = 1 and try to 
match the lower boundary conditions at z = 0. The 
results finally turn into a matrix form, 

u~ u~ u~ u4~| e2 
~ 0 (56) I 

u~ u~ u~ u,~| c3 
/ 

u~ u 7 u~ u,~J c4 

where the superscript indicates the element of Ui, 
i = 1, 4. The determinant of the matrix of equation 
(56) is complex and both real and imaginary parts 
should vanish individually for ci being nontrivial such 

RESULTS AND DISCUSSION 

A. Stationary convection 
The numerical results are checked and compared 

with the previous works. McTaggart[10] studied the 
case that the surface tension is thermally and solutally 
dependent and the upper surface is flatly free (i.e. the 
Crispation number C = 0). In absence of the ther- 
mosolutal convection (i.e. R = 0 and Rs = 0), the 
critical conditions Mc and ac of the stationary modes 
are shown in Table 1 for C = 0, and in Table 2 for 
C 4: 0. The results, obtained by P6rez-Garcia and Car- 
neiro [16] in without the solutal effects (i.e. Ms = 0), 
are also confirmed. The effects of interfacial defor- 
mation, depending on Crispation number C, Bond 
number Bo and the degree of conductivity and per- 
meability at the upper boundary (i.e. K and L) do 
have great influences on the onset of convective insta- 
bilities. Here, we take K = L = 0 for analysis in this 
paper. 

For Marangoni convective instability only (i.e. 
R = 0 and Rs = 0), Fig. 2 presents the critical Mar- 
angoni number Mc as a function of the Crispation 
number C for selected values of the solutal Marangoni 
number Ms = -100,  0 and 100. A negative value of 
Ms, related to an increasing surface tension with an 
increasing solute concentration, would suppress the 
whole system to a more stabilizing state. The Cris- 
pation number, associated with the inverse effect of 
the surface tension, shows the rigidity of the free upper 
surface. For the Crispation number C to be zero, 
the free upper surface, subject to an infinite surface 
tension, is taken to be undeformably flat and the sys- 
tem becomes more stabilizing for both Marangoni 
and thermosolutal convective instabilities. For C to 
be very large, the free upper surface, subject to a 
vanishing surface tension, becomes deformable and 
the system tends to be less stabilizing for both Mar- 
angoni and thermosolutal convective instabilities. The 
critical Marangoni number Mc decreases as C 
increases. These decreasing trends are negligible for 
0 ~< C~< 10 -4, in which range the critical wave 
numbers, associated with the thermosolutal modes, 
are finite. The decreasing trends become proportional 
and significant for C ~> 10 -3, in which range the criti- 
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Table 1. Critical values of  Marangoni  number  M~ and the corresponding critical wave number  a¢ for different values of  L 
and K on the stationary stability of  convection without the thermosolutal convection (C = O, Bo = 0.1, R = Rs = 0 and 

L~ = 1) 

M s =  - 5 0  M s = 0  M s =  100 

[10] This study [10] This study [10] This study 
m~ m~ M~ M~ M, Mc 

L K a¢ a¢ a¢ a t a c a~ 

0 0 129.6 129.603 79.6 79.603 - 2 0 . 4  -20 .396  
1.99 1.993 1.99 1.993 1.99 1.993 

0 I 113.1 113.063 79.6 79.603 11.2 11.207 
1.89 1.891 1.99 1.993 2.21 2.221 

1 0 187.2 187.231 116.1 116.121 - 3 0 . 4  -30.391 
2.40 2.401 2.25 2.246 1.93 1.930 

l I 166.1 166.121 116. I 116.121 16.1 16.121 
2.25 2.246 2.25 2.246 2.25 2.246 

5 5 300.6 300.580 250.6 250.579 150.6 150.579 
2.60 2.598 2.60 2.598 2.61) 2.598 

10 10 463.4 463.408 413.4 413.408 313.4 313.408 
2.74 2.743 2.74 2.743 2.74 2.743 

1() ~0 10 ~o 3 .2x  10 ~ 3 .2x  10 j~ 3.2x 1W ~ 3 .2×10 t~ 3.2x 10 ~ 3 .2x  10 ~ 
3.01 3.009 3.01 3.009 3.01 3.009 

10 m 0 4 .7x  10 H 4 .7x  10 ~' 3 .2x 10 '~ 3 .2x 10 u 1.0x 10 ~t - 1.0x 10 ~ 
3.66 3.660 3.111 3.009 1.82 1.819 

10"' 10" 79.6 79.603 79.6 79.603 79.6 79.603 
1.99 1.993 1.99 1.993 1.99 1.993 

Table 2. Critical values of  Marangoni number  M~ and the corresponding critical wave number  a~ for different values of  C 
and Ms on the stationary stability of  convection without the thermosolutal convection (Bo = 0. I, R = Rs = 0 and LE = l) 

M s =  - 1 0 0  M s - 0  M s =  100 

This study Data from [16] This study This study 
( '  M,. a~ Me a~ M, a~ M~ at 

0 179.603 1.993 79.607 1.99 79.603 1.993 -20 .396  1.993 
10 ~ 179.602 1.993 79.606 1.99 79.602 1.993 20.397 1.993 
10 ~ 179.592 1.993 79.596 1.99 79.592 1.993 --20.408 1.993 
10 a 179.496 1.989 79.499 1.99 79.496 1.989 - 20.496 1.989 
10 ~ 166.667 0.001 66.667 0.00 66.667 0.001 - 33.333 0.001 
10 ~ 106.667 0.001 6.667 0.00 6.667 0.001 -93 .333 0.001 
10 ~ 100.667 0.001 11.667 0.00 0.667 0.001 99.333 0.001 

cal wave  n u m b e r s ,  re la ted  to the  su r f ace  tensi le  m o d e s ,  

a re  van i sh i ng .  

T h e r e  are,  on  the  neu t r a l  curve ,  two m i n i m a l  po in t s ,  

c o r r e s p o n d i n g  to the  t h e r m o s o l u t a l  m o d e  o f  finite 

wave  n u m b e r  a n d  the  su r f ace  tensi le  m o d e  o f  sma l l  

wave  n u m b e r  respect ive ly  a n d  the  m o d e  wi th  the  sma l -  

ler va lue  o f  M a r a n g o n i  n u m b e r  b e c o m e s  d o m i n a n t .  

In  pa r t i cu la r ,  w h e n  the  two  m i n i m a l  p o i n t s  have  the  

s a m e  cri t ical  M a r a n g o n i  n u m b e r ,  b o t h  m o d e s  w o u l d  

set in s i m u l t a n e o u s l y .  The re fo re ,  there  exis ts  a f ron t i e r  

p o i n t  in the  r a n g e  [2 x 10 -4, 5 × 10 3] o f  the  C r i s p a t i o n  

n u m b e r  C at  wh i ch  b o t h  m o d e s  coex is t  s i m u l t a n e o u s l y  

a n d  ac ro s s  w h i c h  a j u m p  on  the  convec t ive  ins tab i l i ty  

f r o m  one  m o d e  o f  finite cri t ical  wave  n u m b e r  to a n o -  
ther  m o d e  o f  a v a n i s h i n g  one  does  exist.  F igu re  2 

s h o w s  t h a t  the  cri t ical  M a r a n g o n i  n u m b e r  Mc a t  the  
f ron t i e r  p o i n t s  as m a r k e d  occu r s  a t  C = 8.44 x 10 _4 

wi th  its va l ue s  be ing  179.365, 79.365, - 2 0 . 6 3 4  for  

M s  = - 100, 0, 100, respect ively .  In  ab sence  o f  ther -  

m o s o l u t a l  b u o y a n c y ,  the  C r i s p a t i o n  n u m b e r  C a t  the  

f ron t ie r  po in t s  s eems  to be i n v a r i a n t  to the  so lu ta l  

M a r a n g o n i  n u m b e r  Ms.  

T h e  B o n d  n u m b e r  Bo, be ing  a ra t io  o f  the  re la t ive  

effect o f  g rav i ty  to su r f ace  t ens ion ,  m e a s u r e s  the  d o m i -  

n a n t  effect o f  the  two  in f l a t t en ing  the  free u p p e r  

surface .  T h e  M a r a n g o n i  n u m b e r  M as  a f u n c t i o n  o f  

the  wave  n u m b e r  a is s h o w n  in Fig.  3 for  v a r i o u s  

va lues  o f  the  B o n d  n u m b e r  Bo. T h e  first m i n i m a l  

po in t ,  a s soc i a t ed  wi th  the  su r f ace  tensi le  m o d e s  o f  

zero wave  n u m b e r ,  a re  very  sens i t ive  to the  su r f ace  

t en s ion  a n d  inc rease  as Bo increases .  Bu t  no  s u c h  t r e n d  

is s h o w n  to the  s econd  m i n i m a l  po in t ,  a s soc i a t ed  wi th  

the  t h e r m o s o l u t a l  m o d e s  o f  finite wave  n u m b e r .  F ig-  

ure  4 s h o w s  the  cri t ical  M a r a n g o n i  n u m b e r  M~ as a 

f u n c t i o n  o f  Bo for  se lected va lue s  o f  M s  = - 100, 0 

a n d  100. T h e  cri t ical  M a r a n g o n i  n u m b e r  Mc var ies  

l inear ly  wi th  Bo, for  Bo < 0.1 in w h i c h  r a n g e  the  sur -  

face tensi le  m o d e  prevai ls .  Mc var ies  s l ight ly  wi th  Bo, 
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R = Rs = K =  L = 0; Fq, C = 8.44x 10 4; dashed line, the 

surface tensile mode ; solid line, the thermosolutal mode. 
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Fig. 3. The stationary neutral curves M(a) are plotted for 
several values of  Bo on the stationary stability convection 
for Ms = - 100, R = Rs = K = L = 0, LE = 1 and 

C = 8.44 × 10 -4. 
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Fig. 5. Locus of Marangoni number M and solutal Mar- 
angoni number Ms for different values of  C on the stationary 
stability of  convection for Bo = 0.1, R = Rs = K = L = 0, 
LE = 1 ; dashed line, the surface tensile mode ; solid line, the 

thermosolutal mode. 

for  Bo > 0.1, in wh ich  range  the  t h e r m o s o l u t a l  m o d e  
domina t e s .  As  Bo increases  up  to  a f ron t ie r  p o i n t  a t  
0.1, a t  w h i c h  these  two  m o d e s  can  coexis t  s im- 
u l taneous ly ,  as s h o w n  in Fig.  4 for  C = 8.44 x 10 -4, 
a n d  across  wh ich  convec t ive  instabi l i t ies  swi tch f r o m  
one  m o d e  to ano the r .  H o w e v e r ,  w i t h o u t  the  effect o f  
t h e r m o s o l u t a l  buoyancy ,  the  B o n d  n u m b e r  Bo at  the  
f ron t ie r  p o i n t  is i nva r i an t  to  the  soluta l  M a r a n g o n i  
n u m b e r  Ms.  T h e  cri t ical  values  in the  p lane  (M,  Ms)  
is p lo t t e d  in Fig.  5 for  selected values  o f  the  Cr i spa t i on  
n u m b e r  C = 0, 8 . 4 4 x  10 -4 ,  10 -3, 10 -2 and  10 - t .  I t  is 

s h o w n  tha t  M decreases  wi th  M s  linearly.  T h e  two  
agencies ,  caus ing  the  m e c h a n i s m  o f  convec t ive  ins ta-  
bilities, w o u l d  re in fore  each  o t h e r  a n d  the  s tabi l i ty  

curve  in the  (M,  Ms) -p l ane  do  sat isfy the  fo l lowing 
l inear  re la t ion  [10] 

M = M e - - M s  (58) 

where  Me, d e p e n d i n g  on  the  value o f  the  Cr i spa t i on  
n u m b e r ,  are o b t a i n e d  f r o m  Tab le  2 for  Ms  = 0. 

The  inf luence o f  the  conduc t iv i ty  and  pe rmeab i l i ty  
o f  the  free u p p e r  surface  can  be app rec i a t ed  f r o m  
Fig.  6 for  t h e r m o s o l u t a l  m o d e  (C ~< 8.44 x 10 -4` and  
surface  tensile m o d e  (C = 10- t ) ,  as the  the rmos ,  flutal 
b u o y a n c y  is be ing  neglec ted  (i.e. R = Rs = 0). ' 
types  o f  b o u n d a r y  c o n d i t i o n s  are  c o n s i d e r e d  : ( a  
duct ive  a n d  i m p e r m e a b l e  (L = 1 a n d  K = 0), (b) 
la t ing and  i m p e r m e a b l e  (L = K = 0) a n d  (c) 
la t ing and  p e r m e a b l e  (L = 0 a n d  K = 1). I t  is s 

'hree 
con-  
insu- 
insu- 
town 
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Fig. 6. Locus of Marangoni number M and solutal Mar- 
angoni number Ms for different values of L and K on the 
stationary stability of convection for Bo = O. 1, R = Rs = O, 
LE = 1 ; dashed line, C = 10 ~ : solid line, C = 8.44 × 10 4. 

f rom Fig. 6 tha t  the conductivi ty and  permeabil i ty 
tend to have contrary  effects on surface tensile modes  
with respective to thermosoluta l  mode. For  ther- 
mosoluta l  mode  with the negative solutal Marangon i  
n u m b e r  Ms, the curve of  case (a) with L = 1 and  
K =  0 lies above tha t  of  case (b) with L = K = 0, 
which, in turn,  lies above tha t  of  case (c) with L = 0 
and  K = 1. However,  this t rend turns inverse for the 
positive solutal Marangon i  n u m b e r  Ms. 

As we know tha t  the thermosoluta l  buoyancy  acts 
as a main  mechanism of  driving convective insta- 
bilities. The neutral  curves of  Marangon i  n u m b e r  M 
as a funct ion of  wave n u m b e r  a are ploted in Fig. 7 
for various Rayleigh number  R and  C = 8.44 x 10 4. 
As expected, two different kinds of  instabilities are 

shown:  thermosoluta l  mode  and  surface tensile 
modes. All of  the curves of  the surface tensile modes  
do coincide and  reach to the same m i n i m u m  value 
in the limit a ~ 0. The second minimal  poin t  of  the 
thermosoluta l  mode  descends, as the Rayleigh n u m b e r  
R increases. 

The critical M a r a n g o n i  n u m b e r  Mc as a funct ion of  
the Rayleigh n u m b e r  R is plot ted in Fig. 8 for several 
values of  the Crispat ion n u m b e r  C = 8 .44x 10 -4, 
10 ~, 2.5  × 10 3, 5 x 10  - 3  and the solutal Marangon i  
number  Ms = - 1 0 0 .  We obta in  a curve similar to 
tha t  achieved by P6rez-Garcia and  Carnei ro  [16] with- 
out  the solutal effect. When  C ~< 8.44 x 10 -4, the ther-  
mosoluta l  mode  dominates.  For  a fixed value of  the 
Crispat ion n u m b e r  C, for example 10 -3, as the Ray- 
leigh n u m b e r  R increases, the surface tensile mode  
dominates  up to a frontier  point  of  R = 107, after 
which the thermosoluta l  mode  prevails. The Rayleigh 
n u m b e r  R at the front ier  point  increases as C increases 
and  the values are 107, 473 and  588 for C = 10 -3, 
2.5 x 10 - 3  and 5 × 10 3, respectively. 

The solutal effects do play an  impor t an t  role for the 
onset  of  the convective instabilities, depending on the 
positive or negative values of  the solutal  Rayleigh 
number  Rs and  Marangon i  n u m b e r  Ms. A positive 
value of  Rs means  an increasing dis t r ibut ion of  the 
light componen t  with height and  the system tends to 
be more stabilizing. The effects of  Ms are similar to 
tha t  of  M. A negative Ms would increase the effect of  
the surface tension and, thus, give rise to a larger 
critical value. F r o m  Fig. 9, with C = 8.44 x 10 -4, the 
second minimal  point  of  the thermosoluta l  mode  
increases by increasing the solutal  Rayleigh n u m b e r  

Rs. 
All of  the curves of  the surface tensile modes, as 

discussed before, do coincide and  reach to the same 
min imum value in the limit a - ,  0. The critical Mar-  
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Fig. 7. The stationary neutral curves M ( a )  are plotted for 
several values of R on the stationary stability convection for 
M s =  -100,  R s = K = L = 0 ,  LE= 1 a n d C = 8 . 4 4 x 1 0  -4. 
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Fig. 9. The stationary neutral curves M(a) are plotted for 
several values of Rs on the stationary stability convection for 
Ms = - 100, R = K = L = 0, LE = 1 and C = 8.44 x 10 -4. 

angoni number  Mc as a function of the solutal Ray- 
leigh number  Rs is plotted in Fig. 10 for C being 10 -3, 
8.44 × 10 -4, 7 x 10 -4, 6 × 10 -4, 5 × 10 -4 and l0  -4. 

When C~> 8.44× 10 -4, the surface tensile modes 
(dashed lines) dominate. But, when C < 8.44 x 10 -4, 
the surface tensile modes (dashed lines) with zero wave 
number  start to appear and compete with the ther- 
mosolutal modes for dominating the onset of  the 
system. The mode with an absolute min imun value of 
Marangoni  number  has a critical one and would set 
in at the marginal state. As the solutal Rayleigh num- 
ber Rs increases from zero, the thermosolutal mode 
of the system is more stabilizing and the surface tensile 
mode becomes dominant• At the frontier point, where 
thermosolutal and surface tensile modes coexist sim- 
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Fig. 10. Locus of M arangoni number M and solutal Rayleigh 
number Rs for different values of C on the stationary stability 
of convection for Bo = 0.1, Ms = - 100, R = K = L = 0, 
LE = 1 ; dashed line, the surface tensile mode ; solid line, the 

thermosolutal mode. 

ultaneously, the solutal Rayleigh number  Rs being 
161, 325 and 564 for C = 7 × 1 0  -4 , 6 x 1 0  -4 and 
5 x 10 -4, respectively, do increase as C decreases• 

B. Oscillatory convection 
The behavior of convective instability in a hori- 

zontal layer of a two-component fluid with a deform- 
ably free upper surface is not  restrained to the station- 
ary convection only [12, 16]. McTaggart  [10] had 
studied the oscillatory instability of convection, driven 
by concentration and temperature-dependent surface 
tension, with the upper surface fiat and free. In 
absence of the thermosolutal buoyancy and for an 
infinite surface tension (i.e. R = Rs = 0 and C = 0), 
we have the critical Marangoni  number  Mc = 85.199 
and the frequency tric= - 0.720 which concide exactly 
with McTaggart  [10] for Pr = 2 and Ms = - 50. Fig- 
ures 11 (a) and (b) present marginal curves of the 
oscillatory modes of the Marangoni  number  M and 
frequency tr~ vs the wave number  a for selected values 
of C. The effect of  C is very similar to both stationary 
and oscillatory modes• As C increases, the Marangoni  
number  M of surface tensile modes are reduced. Those 
decreasing trends are negligible for 0 ~< C ~< 10 -4, to 
which range the thermosolutal mode dominates, and 
become proportionally significant for C >/ 10 -3, to 
which range the surface tensile mode prevails. For  a 
possible case of the latter, the corresponding critical 
wave number  is not  necessarily vanishing. As the Cris- 
pat ion number  C is approximately equal to 10 -3, the 
neutral curve presents two minimal points, indicating 
the existence of the thermosolutal and surface tensile 
modes. The critical Marangoni  number  M c and its 
related frequency tric for both stationary and oscil- 
latory modes are listed and compared in Table 3. 
There always exists a Crispation number  Co* such that 
for C > Co* the minimal Marangoni  number  for the 
stationary modes is smaller than that for the oscil- 
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Fig. 11. (a) The oscillatory neutral curves M(a) are plotted 
for several values of C on the stability of convection for 
Pr=2, Ms= --50, LE=25, R = R s = K = L = 0 ,  

Bo = 0.1. 
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Fig. 12. (a) The oscillatory neutral curves M(a)  arc 
plotted for several values of Bo on the stability of con- 
vection for C - 1 0  3 P r = 2 ,  M s =  50, L~ =25.  

R = R s - K - L = O .  

latory ones. The convective instability takes place 
stat ionari ly in the form of  the surface tensile modes. 
It is shown numerically tha t  C * =  8 .16x 10 4. The 
physical behavior  for C < C* is cont rary  to that  for 
C > C*. The minimal  Marangon i  number  for the 
oscillatory modes is smaller than that  for the stat ion- 
ary ones. The convective instability takes place 
oscillatorily in the form of  the thermosoluta l  
modes. 

The Bond n u m b e r  Bo,  associated with the ratio 
of  gravity to surface tension, measures the dominan t  
effect in flattening a curved free surface. As shown in 
Figs. 12(a) and  (b), the effects of  Bo to s ta t ionary and 
oscillatory modes are quite similar also. The minimal  
Marangon i  n u m b e r  M and its related frequency a~ 
of  the surface tensile modes with a smaller but  not  
vanishing wave n u m b e r  increases as Bo increases. It 
is wor th  not ing that  from Table 3 for C =  10 ~ the 
minimal  Marangon i  number  M and its cor responding  
wave number  a for the oscillatory modes are greater  
than those for the s ta t ionary ones. 

The critical Marangon i  number  M~ as a function of  
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Fig. 12. (b) The oscillatory frequency curves ai(a) are 
plotted for several values of Bo on the stability of con- 
vection lbr ( ' -  10 ~, P r = 2 .  M s -  -50,  LE--25, 

R - R s - K - L = O .  

Table 3. Critical values of Marangoni number M~, and the corresponding critical wave number ac for different 
values of C on the stationary and oscillatory stability of convection without the thermosolutal convection 

(Ms=  --50, P r =  2, Bo=0.1,  R =  R s = 0 a n d L L = 2 5 )  

Stationary Oscillatory 

m~ a, c~,~ M~ at a,c 

0 129.6(/3 1.993 0 85.199 1.759 -- 0.720 
10 ++ 129.602 1.993 0 85.198 1.759 --0.720 
10 ~ 129.587 1.992 0 85.182 1.759 --0.719 
10 4 129.431 1.986 0 85.028 1.713 --0.719 

8.16 x 10 4 83.701 1.934 0 83.776 1.722 --0.710 
10 3 68.667 0.001 0 83.447 1.713 -- 0.703 
10 -" 8.667 0.001 0 21.099 0.403 --0.100 
1() ~ 2.667 0.001 0 5.026 0.550 --0.059 
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Fig. 14. Locus of Marangoni number M and solutal Rayleigh 
number Rs for different values of C on the instability of 
convection for Pr = 2, Ms = --50, LE = 25, R = K = L = 0, 
Bo = 0. l ; dashed line, the stationary mode ; solid line, the 

oscillatory mode. 

the Rayleigh number R, in absence of solutal buoy- 
ancy, are plotted in Fig. 13 for both stationary and 
oscillatory modes at several selected values of the Cris- 
pation number C. The dashed lines correspond to the 
stationary modes, while the solid lines correspond to 
the oscillatory modes. The effect of C on the stationary 
surface tensile modes is more significant than that on 
the oscillatory ones, but this effect becomes negligible 
to both stationary and oscillatory thermosolutal 
modes. However, the surface tensile modes, stationary 
or oscillatory, are very indifferent to the thermal Ray- 
leigh number R, especially for C > 10 -3. While, both 
stationary and oscillatory thermosolutal modes 
depends strongly on the thermal Rayleigh number R. 
The Critical Marangoni number Me of the oscillatory 
thermosolutal modes decrease as the thermal Rayleigh 
number R increases. For the instability of the system 
under consideration, there exists possibly three types 
of frontier points, intersected by two stationary, two 
oscillatory and one stationary and one oscillatory loci. 
For a fixed value of Crispation number C, the minimal 
Marangoni number of the frontier points of the for- 
mer two types, being smaller than those of stationary 
surface tensile modes or oscillatory thermosolutal 
modes, are theoretically interesting, but not important 
at the critical state. The point, intersected by station- 
ary and oscillatory loci as shown in Fig. 13, represent 
the frontier one, at which both modes do set in sim- 
ultaneously. The frontier points, for C = Cso being 
10 -3, 2 × 10 -3 and 3 × 10 -3, occur when the thermal 
Rayleigh number R = R~ o are 142, 419 and 508, 
respectively. The frontier points would vanish for 
C :> 10 -4, in which range the surface tension would 
suppress the surface tensile modes, stationary or oscil- 
latory, and the minimal Marangoni numbers of ther- 
mosolutal modes, stationary and oscillatory, decrease 
linearly with the Rayleigh number R with the oscil- 

latory one being dominant. For C >t 10 -3, the station- 
ary surface tensile modes, having a smaller minimal 
Marangoni number, dominate for R being less than 
Rso, while the oscillatory thermosolutal modes become 
prevailing for R being greater than R,o. 

Loci of critical Marangoni number Mr and solutal 
Rayleigh number Rs of stationary and oscillatory 
modes, in absence of the thermal buoyancy, are plot- 
ted in Fig. 14 at several selected values of the Cris- 
pation number C. The positive solutal Rayleigh num- 
ber corresponds to an increasing light component with 
height and, as well, a more stabilizing density dis- 
tribution, which illustrates the contrast result caused 
by the positive Rayleigh number R. While the negative 
solutal Marangoni number Ms gives rise to an increas- 
ing surface tension with the solute concentration. The 
effect of C is, as before, more decisive on the stationary 
modes than on the oscillatory ones. The critical Mar- 
angoni number Me of the stationary thermosolutal 
modes increases linearly with the solutal Rayleigh 
number Rs, for C ~< 10 -4, and that of the stationary 
thermosolutal modes becomes unaltered, for 
C > 10 -4. The oscillatory modes, depending strongly 
on C and Rs, behave differently to the stationary 
modes. The critical Marangoni number Mr increase 
with the solutal Rayleigh number Rs largely for the 
thermosolutal modes and slowly, not indifferently 
instead, for the surface tensile modes. For the ther- 
mosolutal modes, variation of Me is negligibly small, 
especially at small values of the solutal Rayleigh num- 
ber for the different values of Crispation number. The 
competition between the stationary and oscillatory 
modes determines the favorite mode, prevailing in 
the system. The frontier points, for C = C,o being 
5 )< l0  -4, 6 x 10 -4 and 7 × 10 -4, occur when the solutal 
Rayleigh number Rs,o are 427, 309 and 159, respec- 
tively, and both modes prevail simultaneously. 
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CONCLUSIONS 

The effect of  interfacial deformat ion  on the onset 
of  convective instabili ty in a doubly diffusive fluid 
layer has been studied theoretically and  numerically. 
The following results are obtained.  

(1) There exists s ta t ionary or oscillatory convective 
instabilities of  thermal  or solutal  modes  of  buoyancy 
or surface tension dependence with finite wave num- 
bers and  of  surface tensile modes  with vanishing ones. 

(2) For  s ta t ionary instabilities, bo th  surface tensile 
and  thermosoluta l  modes can co-exist at the Cris- 
pa t ion n u m b e r  C = 8.44 x 10 4. For  C < 8.16 × l0  -4.  

the system sets in oscillatorily. 
(3) The thermal  gradient  is a destabilizing Pactor 

and, as well, the solutal gradient  is a stabilizing one. 
Both  effects become impor t an t  for the thermosoluta l  
modes. 

(4) The Bond n u m b e r  Bo, sensitive to the surface 
tensile modes, increases the critical condi t ions  of  bo th  
s ta t ionary and oscillatory modes. 

(5) The Marangon i  convection,  driven by the sur- 
face tension, is strongly subject to the thermal  and 
solutal gradients  and  the thermal  and solutal Mar-  
angoni  numbers .  The thermal  and  solutal effects, 
being the main  mechanisms of  causing the convective 
instabilities of  the system, may reinforce each other  
mutually.  The s ta t ionary locus between thermal  and  
solutal Marangon i  numbers  satisfies the linear 
relation. 
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